翻訳と辞書
Words near each other
・ Hilbert's twenty-fourth problem
・ Hilbert's twenty-second problem
・ Hilbert's twenty-third problem
・ Hilbert, West Virginia
・ Hilbert, Wisconsin
・ Hilbert–Bernays paradox
・ Hilbert–Bernays provability conditions
・ Hilbert–Burch theorem
・ Hilbert–Huang transform
・ Hilbert–Kunz function
・ Hilbert–Mumford criterion
・ Hilbert–Poincaré series
・ Hilbert–Pólya conjecture
・ Hilbert–Samuel function
・ Hilbert–Schmidt
Hilbert–Schmidt integral operator
・ Hilbert–Schmidt operator
・ Hilbert–Schmidt theorem
・ Hilbert–Smith conjecture
・ Hilbert–Speiser theorem
・ Hilbesheim
・ Hilborn
・ Hilborne Roosevelt
・ Hilborough
・ Hilbourne Frank
・ Hilbram Dunar
・ Hilbrand Boschma
・ Hilbrand J. Groenewold
・ Hilbrand Nawijn
・ Hilbre High School


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hilbert–Schmidt integral operator : ウィキペディア英語版
Hilbert–Schmidt integral operator
In mathematics, a Hilbert–Schmidt integral operator is a type of integral transform. Specifically, given a domain (an open and connected set) Ω in ''n''-dimensional Euclidean space R''n'', a Hilbert–Schmidt kernel is a function ''k'' : Ω × Ω → C with
:\int_ \int_ | k(x, y) |^ \,dx \, dy < \infty
(that is, the ''L''2(Ω×Ω; C) norm of ''k'' is finite), and the associated Hilbert–Schmidt integral operator is the operator ''K'' : ''L''2(Ω; C) → ''L''2(Ω; C) given by
:(K u) (x) = \int_ k(x, y) u(y) \, dy.
Then ''K'' is a Hilbert–Schmidt operator with Hilbert–Schmidt norm
:\Vert K \Vert_\mathrm = \Vert k \Vert_.
Hilbert–Schmidt integral operators are both continuous (and hence bounded) and compact (as with all Hilbert–Schmidt operators).
The concept of a Hilbert–Schmidt operator may be extended to any locally compact Hausdorff spaces. Specifically, let ''X'' be a locally compact Hausdorff space equipped with a positive Borel measure. Suppose further that ''L''2(''X'') is a separable Hilbert space. The above condition on the kernel ''k'' on Rn can be interpreted as demanding ''k'' belong to ''L''2(''X × X''). Then the operator
:(Kf)(x) = \int_ k(x,y)f(y)\,dy
is compact. If
:k(x,y) = \overline
then ''K'' is also self-adjoint and so the spectral theorem applies. This is one of the fundamental constructions of such operators, which often reduces problems about infinite-dimensional vector spaces to questions about well-understood finite-dimensional eigenspaces. See Chapter 2 of the book by Bump in the references for examples.
== See also ==

* Hilbert–Schmidt operator

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hilbert–Schmidt integral operator」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.